Hi-Rate Composite Aircraft Manufacturing (HiCAM) Commercial Transport Needs E1

Dr. Rick Young

NASA Aeronautics – Strategic Thrusts **AAM Mission** \bigcirc Safe, Efficient Growth Safe, Quiet, and Affordable in Global Operations Vertical Lift Air Vehicles Strateolic Global **Sustainable** Innovation in Commercial In-Time System-Wide Safety Assurance Supersonic Aircraft Thrusts **Ultra-Efficient Subsonic** Assured Autonomy for **Aviation Transformation** Transports **Thrust 3:** Realize revolutionary improvements in economics **Transformative** and environmental performance for subsonic transports with opportunities to transition to alternative propulsion and energy **ARMD Key Subsonic Technologies**

Transonic Truss-Braced Wing

Small Core Gas Turbine

Electrified Aircraft Propulsion

High-Rate Composite Manufacturing

Transport Market Demand & Opportunity

Boeing & Airbus market outlook

- By 2040, > 43,000 deliveries
 - replace 80% current & double fleet size
 - Single-aisle, 2nd decade: ~150 per month
 - ➔ Industry desires 80 per month as the production rate for HiCAM studies
- Historic aircraft production rates per month
 - Metals (B737, A320) : 60 1.3x = 80
 - Composites (B787, A220): 10-14 6x = 80

Increased Emphasis on <u>Sustainability</u>:

- Reduced emissions (reduced weight, drag) → Composites: low weight, enables low-drag configs
- Reduced operating cost (acquisition, fuel, maintenance)

Transport Market driving:	(1) High volume, earlier deliveries	➔ high-rate (80/month) production						
	(2) cost reductions	→ <50% of current cost						
	(3) performance improvements							
Potential AAM market: similar drivers, vehicle rate approaching automotive (1000x)								

Hi-Rate Composite Aircraft Manufacturing (HiCAM)

<u>Goal:</u> Demonstrate manufacturing approaches and associated technologies for <u>large composite primary</u> <u>airframe</u> structures that enable <u>high-rate production</u> (up to 80 aircraft per month) with <u>reduced cost</u> and <u>no weight penalty versus 2020 technology for composite</u> <u>structures</u> for <u>early 2030s</u> single-aisle aircraft production

- Mature, affordable, high-rate composite manufacturing technologies with reduced labor, equipment, and tooling costs
- Model-based engineering tools for high-rate concepts
- Large-scale demo by 2026 (TRL/MRL 6)

Key Partners: Advanced Composites Consortium (ACC)

Progress beyond

Phase 0: Tasks Supporting Formulation

	System Requirements, Assessment Process		Manufacturing Technology Assessments						Model-Based Engineering			
			NDE	Resin Infusion		Thermoplastic		Thermoset	Tool Assessments			
PWP CRT Members	P0-1.1 Req. Def	P0-1.2 Tech Assess Process	P0-2.1 NDE	P0-2.2 Rapid Cure Resins	PO-2.3 Resin Infusion	P0-2.4 Thermoplastic Forming	P0-2.5 Thermoplastic Assembly	P0-2.6 Thermoplastic AFP	P0-2.7 NextGen Thermoset	P0-3.1 Process Models	PO-3.2 Structural Sizing Tools	P0-3.3 Design for Manufacturing
NASA												
ATC Mfg.												
Boeing												
CGTech												
Collier Research												
Electroimpact												
GE												
Hexcel												
Northrop (NGSC)												
Rohr (Collins/RTX)												
Solvay												
Spirit												
Toray												
U of SC												
WSU (NIAR)												

- 12 Cooperative Research Teams, comprised of 3 to 10 members
- Total Value \$16M (including \$8M partner cost share)

Results from Tasks Supporting Formulation

System Requirements and Baseline Definition

- Baseline Components:
 - HiCAM Reference Aircraft for high-rate production market
 - Today's "state of the art" composite construction processes
- Design Requirements and Objectives
 - Commercial airplane requirements
 - Standard Design Objectives, Constraints
- Structural Sizing Plan & Baseline Sizing
 - Common Methods, Commercial Tools
 - Consistent structural sizing for competing concepts

Large-scale Demo Options

- Conceptual Designs
 - Fuselage Barrel Segment, Wing Box, Precursor Articles
- Test Plans: Types and Quantities
- ROM Schedules and Cost Estimates

Calculation of Key Performance Parameters (KPP)

- Component Definition: geometry, manufacturing definition
- Structural Sizing
- Manufacturing Models
 - Activity Level Model;
 Station Definition,
 Precedence, Duration, Cost
 - Discrete Event Simulation; parts & tooling moving through stations; determines # lines for 80 ship-sets per month

- Weight
- Production Rate (80/mo)
- Non-Recurring Cost (\$B)
- Recurring Cost (\$M)
- Factory Area (M sq ft)

Quantitative Technology Assessments for Competing Manufacturing Approaches

- Compare to baseline production system (787 technology)
- Potential impact on KPPs (future state)
- Current state assessment: TRL, MRL
- Technology development roadmaps

HiCAM Scope

NASA

 Large composite primary airframe structures

Competing Manufacturing Approaches

- Next Gen Thermosets
 - Evolutionary, lower risk
 - AFP: heating, inspection
 - Automated stiffener forming
 - Shorter autoclave cycle time
 - Paint prep

- Resin Infusion
 - Out-of-autoclave
 - Rapid cure resins
 - Near net shape
 - Integrated structures
 - Unstitched and stitched

- Thermoplastics
 - AFP, out-of-autoclave
 - Tack, secondary oven
 - In situ consolidation
 - Stamping, cont. compression molding, stiffener forming
 - Welding, bonding, repair

Shorter Cycle Time -> Less Equipment, Labor -> Lower Cost

Commercial Transport: Composites Technology Needs

- High-rate, low-cost manufacturing concepts
 (labor, equipment; material cost is small factor)
 - Low processing time = less equipment, labor
 → 'new' materials to enable rate
 - Consolidation choices: on the fly, secondary process, oven or autoclave (forgiving)
 - Reduced part count (?)
 - Complex unitized versus simple parts & rapid assembly
 - Joining (co-processing, bonding, welding)
 - Automation: quality, factory flow
 - Factory design for rate (movements, inspection, rework)
 - Design for manufacturing, inspection
 - Flaw acceptance: fast, not perfect, but safe
- Lighter weight
 - always desired, but secondary importance

- Computational methods
 - Concepts lacking historical experience
 - Simulation for rapid development, learning
 - Sizing tools for aircraft program application
 - Many variables, simulation to predict trends

Collaboration

- Multiple company teams, supply chain: leverage expertise, resources (funds, facilities)
- Integration of manufacturing, inspection and design

• Manufacturing project team focus

- Limited scope, defined requirements & objectives
- Technology assessment process, quantitative key performance parameters
- Constrained timeline to drive decisions, down-selects

