

National Campaign Initial UAM Surrogate Flight Research Results Crosscutting AAM Ecosystem Working Group (AEWG)

Te

1

OCTOBER 26, 2021

Agenda

October 26, 2021

3:00pm - 5:00pm ET

Time (ET)	Торіс	Speaker
3:00PM – 3:20PM	NC Developmental Test Objectives	• Starr Ginn, NASA
3:20PM – 4:10PM	Initial UAM Surrogate Flight Research	David Webber, NA
4:10PM – 4:20PM	Q&A	All Above
4:25PM – 4:45PM	Infrastructure and Procedures	• David Zahn, NASA
4:45PM – 4:55PM	Q&A	All Above

National Aeronautics and Space Administration

NAS

Active Participants

- Platform: MS Teams
- Discussion: MS Teams microphone, chat, and "Raise your hand" functions
 - Leave your cameras/webcams off to preserve WiFi bandwidth
 - Use your mute/unmute button (e.g., remain on mute unless you are speaking)
 - Enter comments/questions in the chat
 - Click the "Raise your hand" button if you wish to speak
 - Say your name and affiliation before you begin speaking

Listen Only Participants

- Platform: YouTube Live Stream
 - Go to https://nari.arc.nasa.gov/aam-portal/ for the link, or:
 - Copy and paste <u>https://youtu.be/b740o_Aab88</u> into your browser
- Discussion: Conferences.io
 - Enter https://arc.cnf.io/sessions/c5n1/#!/dashboard into your browser
 - Questions will be addressed *if times permits or at the facilitator's discretion*

MEET OUR NASA TEAM

Starr Ginn National Campaign Lead

Al Capps Airspace Operations Management (AOM) Tech Lead

Shivanjli Sharma National Campaign Deputy

Andrew Guion Flight Safety Lead

Jeff Leigh Lead Chief Engineer

David Zahn Airspace Procedures PI

Mike Marston Lead Operations Engineer

David Webber FAA Flight Test Liaison/Vehicle Pl

MEET OUR FAA TEAM

	38. 3	8	35 35 3
Name	Office 🗸	Primary V	LOB -1
Francisco Castillo	AGC-220		AGC
Theresa Dunn	AGC-230		AGC
Humberto Ruiz	AGC-250		AGC
Noureddin Ghazavi	ANG-C53	х	ANG
Eric Elmore	AEE-001	х	APL
Don Scata	AEE-100		APL
Durre Cowan	AEE	х	APL
Mike Lukacs	APO-100		APL
Dipasis Bhadra	APO-100		APL
Rebecca Macpherson	ARA	х	APL
Robert Bassey	AAS-110	х	ARP
Keri Lyons	AAS-300	х	ARP
Raymond Zee	AAS-120		ARP
Dale Williams	AAS-300		ARP
Christina Nutting	APP-400		ARP
Ryan M Berry	AXE-001	х	ASH
Mark Cohen	AXE-U00		ASH
Tricia Fantinato	AXU-U00		ASH
Jennifer Roberson	AXU-U00		ASH
Mark Gauch	AJV-P21		ATO
Jon Stowe	AJT-3120		ATO
Alex Moreno	AJT-3120	х	ATO
Svetlana McCarthy	AJT-3120		ATO
Whitney Knight	AJT-312		ATO
Marcus Boukedes	AJV-S		ATO
James Herrera	AJV-S110	х	ATO
Eric Jennings	TEDC1-PCT		ATO

Jonathan Torres	ANG-E261		WJHTC
Ryan King	ANG-E261		WJHTC
Wesley Major	ANG-E261		WJHTC
Marcus Cunningham	AFS-002B	Х	AVS
James Wilborn	AIR-633	х	AVS
James Foltz	AIR-618	Х	AVS
Katie Constant-Coup	AIR-670		AVS
George Romanski	AIR-600		AVS
Christopher Swider	AUS-200		AVS
Francisco Capristan	AUS-320		AVS
Aaron VanBuren	AUS-320		AVS
Kerin Olson	AUS-320		AVS
Scott Gore	AUS-410	х	AVS
Jacquelyn Erinne	AUS-420		AVS
David Dunning	AUS-440	х	AVS
Bradford Drake	AUS-440	Х	AVS
Randy DeAngelis	AUS-440		AVS
Manny Cruz	AUS-440		AVS

• Role of FAA:

- Develop and refine ConOps with internal and external stakeholders (<u>ConOps v1.0</u>) and is responsible for establishing operational parameters and maintaining oversight
- Verify where experiments, architectures, and concepts are anchored in existing standards (where feasible)
- Determine data needs from various LoBs to support evolving standards and policies

• Role of NASA:

- Conduct flight demonstrations that evaluate use cases and develop scenarios that step through the relevant portions of a specific operation
- Design experiments, architectures, and concepts then develop a system of system ecosystem to enable AAM
 - For example, energy reserves to increase individual aircraft operational performance requirements in order to optimize the capacity utilization of the airspace structure.
- Collect data, perform analysis, and disseminate to appropriate groups

Objectives of NC/FAA Collaboration in the WG:

- Collaborate throughout all stages of the AAM National Campaign, from planning and scenario validation to AAM National Campaign execution
- FAA lines of business and stakeholders to provide subject matter expertise and technical support where possible to advance AAM National Campaign objectives and ensure information captured from lessons learned informs FAA
- Ensure the data collected will help inform the FAA for development of appropriate policies and procedures to enable integration of Advanced Air Mobility (AAM) concepts into the National Airspace System (NAS)

Objective 1: Collect flight-data during the National Campaign Series to accelerate certification and approval processes

	Products	Deliverable Dates	Linkages	Status
•	Measure FAA AAM vehicle data parameters utilizing a surrogate vehicle during NC Dry Run	 FAM Flights Dec. 2020 Dry Run Flights Mar. 2021 	 NC Data Teams, AFB- 260, AIR-710, AJW-1473 	CompleteComplete
		• FAM Flights Dec. 2020	• AJF-13, AIR-713, AIR-	Complete
•	Provide FAA FIAPA FTE, FAA Vehicle Performance FTE, FAA certified test pilot	Dry Run Flights Mar. 2021	714, AJV-A	Complete
		• FAM Flights Dec. 2020	NC Data Teams	Complete
•	Develop a joint NC Flight Test Report for each NC Series demonstration tests	• Dry Run Flights Mar. 2021	 NC Data Teams, AFB- 260, AIR-710, AJW-1473, ARP, FTI/STI In Draft NC Flight Test Report 	In Progress
	Objective On	e example, there a <u>re five</u>	objectives	

NC Dry Run – Outcomes and Highlights

Operational assessment and revision of NC flight test plan using a helicopter as a stand in representative UAM vehicle

Assess operational processes for integrated operations with vehicle and airspace and data collection in the field

Capture **foundational** vehicle and operational data to support **evolutions** in vehicle, infrastructure, and airspace requirements that will enable the advent of UAM in the National Airspace System (NAS)

NC DT Flights with Joby enables initial assessment and data collection of eVTOL performance characteristics and acoustic testing at Partner Test Site

- Developmental Test (NC DT) with partner Joby Aviation included activities to prepare for NC-1 such as collaborating on objectives, exercising range deployment, and data collection protocols
- Given the unmanned configuration for this flight test, the NC is leveraging a data buy like process that allows for flights under current certifications from the FAA and AFRL

 \rightarrow Regulatory, policy, or standards gap facing AAM

A new or novel AAM goal/aspect presents a need perhaps not completely addressed by existing regs/policy/standards/MOCs

- AAM presents a new aspect/goal/challenge
- Current regs/policy/standards/MOCs may not completely address that new AAM need/target
- Some effort, product, data, standards development required to fill gap

Gap Subject:

- Gap category (reg/policy, technical, economic? Aircraft Cert, IFR procedures, ATM? Safety, ops, efficiency, convenience? Priority?)

1) Current/legacy state:

- 2) Specific applicable regs/policy/guidance/MOCs/standards/forms:
- 3) AAM requirement/need/target and associated UML:
 - What is new challenge presented by AAM and when?
- 4) Potential limitation/inadequacy/incompatibility/lacking aspect of current regs/policy:
 - What is perceived/potential shortfall or missing piece of existing regs/policy?

5) Relevant NC/Build 2 test objectives:

- What related performance or technical parameters were we measuring and why?
- What were the related data requirements? (What data did/should NC collect?)
- Who is the customer for the testing/ who requested the data/ who will benefit or be informed by the results? What products will NC deliver to meet their needs?
- Is the gap related to an FAA ANG UAM Use Case or CONOPS question?

6) Relevant NC/Build 2 test report results, conclusions and recommendations:

- What were results of tests against the test objectives, and what value-added conclusions & recommendations do we have?

7) Desired end state:

- + Description of effort/product/data/standards development required?
- + How would gap be filled/ current regs be supplemented to address AAM needs?
- + Future work required/recommended? By NC or AAM community?

Questions

NASA ADVANCED AIR MOBILITY (AAM) NATIONAL CAMPAIGN (NC)

Urban Air Mobility Surrogate Flight Research

initial observations and assumptions

Dave Webber – NASA AAM Vehicle PI & FAA Flight Test/Certification Liaison

FAA/NASA Collaboration on the AAM NC

Current aerospace developments demand that FAA look more forward, and NASA support immediate and near future needs of potentially revolutionary US air transportation

FAA is immediately challenged to ensure safety for future technologies (~3 yr), while preserving the existing "rights" and expectations of the aviation industry

FAA seeks empirical "evidence" to support necessary standards development

Advanced Air Mobility (AAM)

Advanced Air Mobility (AAM) encompasses several nascent "operational use cases" in addition to innovative evolutions in existing aerial mobility/technologies These new operational use cases need to be understood in order to develop appropriate regulatory (minimum airworthiness) requirements for vehicles

FAA Perspective

FAA Vehicle Certification recognizes the "holistic" inter-dependence of standards

Example: If required Vehicle Capabilities are Raised/Lowered – Terminal Ops volumes are Increased/Decreased

FAA seeks the proper <u>balance of standards</u> that will enable <u>new operational use</u> cases (solve Urban Air Mobility and you likely solve other operational models)

Anchoring to today's rotorcraft capabilities/heliport design – UAM Surrogate flight tests, attempts to capture foundational data to support evolutionary UAM concepts

Urban Air Mobility (UAM) configurations

- Lift + Cruise Completely independent thrusters used for cruise vs. for lift without any thrust vectoring
- Electric Rotorcraft An eVTOL aircraft that utilizes a rotor, such as an electric helicopter or electric autogyro
- Wingless (Multicopter) No thruster for cruise/only for lift
- Vectored Thrust An eVTOL aircraft that uses <u>any</u> of its thrusters for lift <u>and</u> cruise.

"UAM" is a subset of Advanced Air Mobility (AAM) – intended for paid passenger-carrying operations over the urban environment

Urban Air Mobility (UAM)

- Economic model (\$\$'s per seat-mile) demands an aviation version of "mass production" and operation that is new to small aircraft
 - 10's of thousands of aircraft operated by a single part 135 operator (in some cases this operator will be the manufacturer)
 -vs-
 - 100's of aircraft purchased by private parties and operated by several operators running a mixed fleet operation
- Exhibit thrust and system isolation features similar to transport category rotorcraft
 - utilize a critical engine/system failure concept, and;
 - assure adequate designated takeoff/landing and approach/departure surface areas, and;
 - adequate performance capability for continued safe flight in the event of critical (propulsion or systems) failures.
- Utilize "Simplified Vehicle Operations" and autonomy to ease burden on pilot population

- Low speed controllability must account for constraints of the urban landscape
 - Urban "pinnacle" takeoffs and landings
 - Constrained approach and departure paths
 - Unpredictable winds associated with "urban canyons" coupled with an ever changing urban landscape
- Vehicle characteristics must enable condensed IMC ops in the urban environment
 - minimum stability and control characteristics must be established for UAM operations (Approach capability, V_{MIN-I}, V_{Y-I}, V_{NE-I}, etc)
 - highly-augmented, feedback-control, FBW FCS, providing 4-axis Stability Augmentation (key enabler for low-speed vertical flight instrument operations) challenges existing vehicle certification standards and test techniques
- UAM Terminal Procedures (TERPS), Infrastructure and **Airspace standards need to align with UAM Category/Class Vehicle Airworthiness Requirements***

*Category/Class airworthiness standards allow grouping – provides assurance that disparate designs will exhibit minimum capabilities in the National Airspace System

Birds of a feather... ...flock together

- Shared flight qualities/characteristics
- Collision avoidance¹ (maneuvering, separation standards)
- Velocity matching¹ (drives terminal operations)
- Flock centering¹ (required navigational performance)

¹from *Emergent Autonomy – A Step Toward Assurance* 2021 IEEE paper (Lacher, Cook, Oksenhorn) ref. Craig Reynolds, *Flocks, Herds and Schools: A Distributed Behavioral Model, 1987*

Gaps = initial Research Questions

Urban Air Mobility Operational Use Case

- What is "UAM" (AAM NC assumptions) paid passenger carrying ops in the urban environment
- What are physical constraints of UAMs?
- What are reasonable airworthiness requirements for UAM?

 From Uber Elevate White Paper - Oct 2016 – UAM must exhibit a four-fold improvement over current part 135 safety in terms of fatalities-per-passenger-mile*

*current part 135 performance has twice the fatality rate of privately operated cars

- Initial focus on: Performance, Stability, Control, Efficiency, Energy Reserves, Airspace design
- What are physical constraints of UAM Operations?
- What are the specifications for viable UAM Airspace constructions
 - Approach
 - Departure
 - Enroute
 - Contingencies
- What is required to transform an assumed Special Class Vehicle/Operation into an everyday mode of air travel?

Building a system of systems

Pouring the foundation for condensed, IMC operations, in the urban environment...

...necessary steps toward complex, autonomous, operations Required UAM Vehicle Flight Characteristics

- Performance
- Stability and Control
- Agility
- Precision
- Collision avoidance

Viable UAM terminal operations

- Approach/Departure capabilities
- Approach constraints
- Appropriate Speeds

Initial Airspace/Infrastructure construction parameters

- Touchdown/Liftoff areas
- Proximity to structures
- Approach/Departure surfaces
- Airspace constraints

UAM initial interest areas

Vehicle Characteristics required for Urban Operations

- UAM Performance requirements
- Minimum Stability requirements (IFR)
- All Azimuth Capability (controllability)
- Wind/structure dynamic interface (proximity of landing zone to structures)

3,000

2,93

Appropriate Handling Qualities

Viable UAM

Approaches/Airspace

- Viable UAM IMC approaches
- Heliport and Vertiport ops

Required evolutions to existing standards to enable UAM

- Airspace
- Infrastructure

Condensed UAM Approaches/Airspace

- Measured key Vehicle Performance parameters
- Started work on Developmental UAM Task Elements fed results to VMS etc.
- Started work to determine Dynamic Interface capabilities of a given UAM surrogate
- Determined initial Viable UAM IMC approach constraints
 - Constant Airspeed (V_{FAF})/Deceleration Height (200 ft) technique retained for future testing (UAM Task Elements)
 - 9 degree/60 KIAS V_{FAF} nominal approach appears viable (UAM Task Elements Approaches)
 - 11 degree/60 KIAS V_{FAF} "calm wind abuse" certification technique appears reasonable (equivalent to 10-20 kt tailwind abuse)
 - Approach Constraints chart constructed (Vehicle Characteristics Performance)
- Heliport and Vertiport operations
 - Started process to verify hypothesis that existing Approach/Departure Surfaces/design standards are suitable for UAM Operational Use Case
 - Determined Initial design requirements for viable UAM routes

Measure discrete Subpart B capabilities of UAM Surrogate

- **UAM Approach Capability/Constraints (performance)**
 - Developed Approach Constraints chart that effectively communicates a given vehicle's ability to fly "UAM" approaches
- Measure (stability) of UAM surrogate against IFR reqmts
- **Confirm All Azimuth Capability (controllability)**
 - Current civil rotorcraft requirement is 17 knots is this appropriate prevailing winds for the UAM operational use case?

Application of measured characteristics to help answer UAM operational use case questions

- Wind/structure "dynamic interface" (controllability)
 - What is relationship between <u>assured</u> all azimuth capability and the ability to fly leeward approaches to a landing zone?
 - proximity of landing zone to building is anchored to current FAA Heliport design criteria
 - Intent is to show relationship between minimum assured All Azimuth capability and ability to safely fly leeward approaches in the urban environment
- Support development of Handling Qualities standards for highly augmented "UAM mission" vehicles
 - Appropriate Mission Task Element (MTE) requirements
 - Compare Subpart B (IFR) results against Developmental UAM HQ reqmts
 - "Tune" Desired/Adequate Criteria
 - Test Course tailored to civilian vehicles in the <7,000lb weight class

NASA

Vehicle requirements for Urban Air Mobility Operations

- Verified All Azimuth Capability (Vehicle Characteristics)
 - ~25 kts* dedicated test at test day weight/altitude/temperature results in at least 26% control margin across all axes

*recommend pace vehicle be incorporated for future all azimuth testing in order to determine UAM limit conditions

- Windward/Leeward effects observed during initial "Dynamic Interface" testing (UAM Task Elements)
 - Controllability checks are identical between "freestream" (01H) and "windward" (03H) Landing Zones (LZ).
 - DI test sequence modified to only compare 01H and "leeward" (02H) LZ prior to commencing DI approaches
 - Test sequence modified to fly approaches with wind from the right, prior to wind from the left (Vehicle Characteristics – All Azimuth results)

*recommend CFD analysis of research building/LZ flight test infrastructure to support technical findings

Developmental UAM Task Elements

- AAM NC foundational role in Mission Task Element development
- Utilize UAM Surrogate vehicles as "experiment control" to compare flight results from "traditional" vs "draft civil HQ" FT methods
- Deliver Flight verified Performance constraints (viable UAM approaches)

- Support interagency and industry collaborative sim research
- Collaborate with industry and iterate on flight research needs

June 2021 Study* Ames Vertical Motion Simulator (VMS)

- Unified' FCS and inceptor strategy
- Usable Cue Environment/Test Range Development
- Simulator Infrastructure for future development
- Initial Evaluation methods
- Results/observations used to refine Follow on Flight
 Test HQ criteria and test range needs^{w/M. Feary NASA AFCM}

UAM initial interest areas

Vehicle Characteristics required for Urban Operations

- UAM Performance requirements
- Minimum Stability requirements (IFR)
- All Azimuth Capability (controllability)
- Wind/structure dynamic interface (proximity of landing zone to structures)
- Appropriate Handling Qualities

Viable UAM

Approaches/Airspace

- Viable UAM IMC approaches
- Heliport and Vertiport ops

Required evolutions to existing standards to enable UAM

- Airspace
- Infrastructure

AAM National Campaign

Votion Hing Region

A description

Speed for Minit Descent Rate

In Automotor at

Francis I Mil

Box to King

3,000

2,93

Flight

- Constant speed approach from Final Approach Fix (FAF),
- Fixed glidepath angle (GPA),
- Defined deceleration height (H_{DECEL})
- Missed approach, or;
- Decelerate to a vertical landing,
- Constrained by passenger comfort parameters

(steeper approaches will tend to require powered-lift vehicles to fly their approach in transitional flight)

<u>Threshold Speed</u> , V _{AT} *		<u>final approach speed</u> , V _{FAF} (3°/4.5°)	<u>max descent rate</u>	
Α	<u><90 knots</u>	70-100 knots	~500/700 fpm	
Β	91-120 knots	85-130 knots	~650/1050 fpm	
С	121-140 knots	115-160 knots	~750/1100 fpm	
D	141-165 knots	130-185 knots	~900/1300 fpm	
Ε	166-210 knots	155-230 knots		
	(E usually not published on	civil charts – used for military fighters, et	c.)	
Н	N/A	60-90 knots	~500/700 fpm	

*V_{AT} is based on 1.3V_{SO} or 1.23VS_{1G} (akin to V_{REF}) Instrument approach assumes 3° nominal/4.5° glidepath

UAM Heliport – 120ft²

Square TLOF/FATO (and Safety Area) designed in accordance with the FAA's current Heliport Design Advisory Circular*.

Accommodates vehicles that will make a constant decelerating approach on a fixed glidepath to a hover point directly over the touchdown point prior to touchdown.

40 foot nominal Touchdown/Liftoff area (TLOF) (assumes max dimension <40 feet) Ref. AC 150 5390-2C Heliport Design (Markings/placement to be IAW Heliport Design AC – FATO length will need to be adjusted dependent on elevation)

Figure 2–2. TLOF/FATO Safety Area Relationships and Minimum Dimensions:

AAM NC Terminal Ops

6 AAM NC "UAM Heliports"

- 40x40ft TLOF
- Northern Heliports suitable for wind/controllability studies
- All Heliport design/placement IAW AC 150/ 5390-2C Heliport Design

1 AAM NC "UAM Vertiport"

- 1090ft length x 120ft width TLOF/FATO
- 01H + 02H + 03H = XEDW
 - Research Airport
 - 04H + 05H + 19/01 = XVPT Research Airport
- 06H = XX33 Research Airport

06F

Constant Airspeed* Approach – UAM Heliport

Constant Airspeed Approach – NC UAM Vertiport

Approacl	n Constraints			
GPA	App/Dep surface = Obstacle Clearance	V _{FA}	F KIAS	V _{FAF} KTAS
3 deg	0.875° (66:1-) Cat III Airport 2.86° (20:1) Small Airplane, VFR, some IFR* 3.81° (15:1) Small Airplane	Per	existing TI V _{so} >50k V _{so} <	ERPS category ts – Cat B 50kts
	Standard Certification delivers nominal 3 Glidepath Angle capability, IFR capability NOT assured (Part 23 and Part 27 baseline)	-4.5°		
Aircraft Capability	Infrastructure/Terminal Design/Operations		drives Airspace requirements	

*consult AC 150/5300-13A Airport Design for additional details (e.g. threshold reqmts, etc)

Approach	Constraints UAM Heli-¹/Verti-²port (200 ft H _D	_{ECEL} , ² varies depe	endent on V _{AT})	
GPA	App/Dep surface = Obstacle Clearance	V _{FAF} KIAS	V _{FAF} KTAS	
3 deg	0.875° (66:1) Cat III Airport	Per existing T	ERPS category	
6 deg	3.37° (17:1) Vertiport IFR	75 ¹ , <u><</u> 90 ²	79¹, <u><</u> 94	
9 deg	5.71° (10:1) Vertiport IFR	60	63	
12 deg	8.13° (7:1) theoretical	45	47	
VTO	2.58° (22:1) to 100 ft AGL,	<45	<47	Social Acceptance
	Then 56.3° (6:9) <i>SC-VTOL MOC</i>		Airspace evolutions?	factors? Airmen Standards?
Aircraft drives Airspace				
Capability	Infrastructure/Terminal Design/Operations	require • • • Tur • Inbound • Sep	ements H _{FAF} In radii leg lengths aration	

Initial UAM surrogate results

Approach Constraints charts Vehicle Characteristics - Performance

Initial UAM surrogate results

Approach Constraints charts Certification "Abuse" angle = nominal + 2°

Approach Constraints charts

Approach Constraints charts

Approach Constraints charts

Initial UAM surrogate results

Approach Constraints charts Vehicle Characteristics - Performance

Initial UAM surrogate results

Approach Constraints charts

"Passenger comfort" constraints

Constant V_{FAF} *approach to* H_{DECEL} = 200*ft*

Follow on Flight Test – next steps

2.4 FP5²

"0.075g decel 51 secs to TDP

izem windl

Vehicle Characteristics required

for Urban Operations

- UAM Performance requirements (lower GPAs)
- All Azimuth Capability relation to:
- Wind/structure dynamic interface (proximity of landing zone to structures)
- Continue development of standards for Handling Qualities for UAM

Viable UAM

Approaches/Airspace

- Apply Vehicle constraints to airspace construction parameters
- Determine Viability of UAM IMC approaches
- Determine challenges inherent in Urban Heliport and Vertiport ops

Altitude AGL (R)

FOFT Infrastructure iterations

Viability of UAM "Wheel" to provide multiple IAFs for UAM Approaches

XEDW Aerodrome 6 deg approach Diameter = 3.0NM* 9 deg approach Diameter = 2.1NM* 12 deg approach Diameter = 1.6NM*

*H_{FAF} respects 65 ft Controlling Obstacle: H_{FAF} = 600ft/2900ft MSL

Reasonable variations H_{FAF} = **500/1000**ft 6 deg approach Diameter= **2.7/4.2**NM 9 deg approach Diameter= **1.9/2.9**NM 12 deg approach Diameter = **1.5/2.2**NM

However, it is viable to fly at a higher and more UAM economical speed on the "Wheel" without violating standard rate turn constraints Standard rate turn diameter – 140 KTAS = 1.5NM

UAM Certification

Standard Certification delivers nominal **3-4.5°** Glidepath Angle capability, IFR capability NOT assured (Part 23 and Part 27 baseline)

UAM/EASA-Enhanced is expected to require Category A performance "flyaway" capability after failure Steeper approach capabilities increase operational utility in urban environment

"Flyaway" assurance requirements increase with steeper GPA capabilities

-however-

some business cases may not require same aircraft requirements demanded by the Urban Air Mobility (UAM) business case

Certification Basis should clarify Glidepath Angle/Departure capability

UAM future research areas

- Continue HQ development with more and more augmented vertical lift vehicles
 - B429, single pilot, IFR, CAT A
 - Actual UAM vehicles via NASA partnerships
- Minimum Departure Performance requirements
 - Leverage CAT A capable UAM surrogate
 - Can a "Powered Lift" Departure Requirement that merges Rotorcraft Category A with Commuter Airplane "flyaway capability" requirements be realized?
 - Applicant defines Kinetic Energy (e.g., V₁) or combination of Potential and Kinetic Energy (e.g., Takeoff/Landing Decision Points (T/LDP)) for approach/departure assurance
- Automation research
- Simplified Vehicle Ops (SVO) research

What targeted research are stakeholders interested in?

November 2021 AFCM AEP-1 Study*

Objectives

- Focus on Automation
 - SVO 1-3

- 1 UAM aircraft concept (Lift + Cruise)
- Indirect Flight Control System (IFCS) concepts
- Extension to HQTEs developed in FAA -1A
- Explore different levels of aggressiveness
- Environmental Conditions
 - Wind effects on IFCS
- Operational vs Stress Test

Results/observations can be used to inform AAM NC flight research experiment design/iterations

Departure Assurance

*this ASSURANCE becomes a legally enforceable requirement when captured in the Type Certificate Data Sheet – and can then become a <u>foundation</u> for operational, infrastructure planning

Vehicle (assured) capability drives infrastructure design

after critical loss of thrust... <u>Transport category A, rotorcraft class</u> Certified to be capable of returning to the Point of departure – and/or flyaway with >100 feet per minute climb rate

Normal category, rotorcraft class no minimum climb rate assurance

What minimum airworthiness requirements are required to support the Urban Air Mobility Terminal Operations model? *after critical loss of thrust...* <u>Transport category, airplane class</u> Certified to 2.4 - 3 percent climb gradient

Normal category, (multi-engine) airplane Certified to 1 - 2 percent climb gradient - *or* no minimum climb rate assurance if crashworthiness is adequate

Can we "merge" transport/commuter airplane and rotorcraft Cat A performance requirements to support commercial powered lift requirements?

QUESTIONS/COMMENTS/DISCUSSION

NASA ADVANCED AIR MOBILITY (AAM) NATIONAL CAMPAIGN (NC)

Urban Air Mobility Surrogate Flight Research

Infrastructure and Procedures

David Zahn – NASA AAM Airspace/TERPS PI

National Campaign Developmental Testing

Experimental Landing Surfaces

- Precision Surveys
 (Conventional & LIDAR)
- Registration & Coding

Test Range Routes & Flight Plans

- Test Range Constraints & Routes
- Flight Plan Theories
- Truncated ARINC coding
- Route Tracking

Terminal Operations

- Approach Procedures
- Experimental Flight Inspection software

AAM Airspace Architecture Model

The airspace volume flexes and retracts dynamically to account for air speed, obstacles and winds enabling on-demand departure and approach procedures.

NC developed an airspace configurable tool that integrates AAM vehicle performance to obstacle and terrain evaluation.

AAM Airspace Architecture Model

Radius defined by vehicle performance and altitude defined by controlling obstacle.					
Departure Enroute Approach		Pan Camera: Right Mouse Button	n + Drag		
Calculation Parameters	User Interface Toggles	Climb Gradient Formula			
Obstacle Scan Radius (m) — 100 Termination Altitude (ft) — 100	CG Cross Section ✓ CG Desired ✓ CG Required ✓ Scan UI	$8204.8 \text{ ft/NM} = \frac{1363.4 - 1221.0}{0.76 \times 0.02}$			

NC developed an airspace configurable tool that integrates AAM vehicle performance to obstacle and terrain evaluation.

Experimental Landing Surfaces

Advanced Air Mobility (AAM) may require high precision for vertiports, unique coding & novel approach procedures.

Test Range Flight Constraints

Edwards A.F.B. constraints

- fly-over restrictions around buildings & structures
- altitude limitations over UAS workspace
- XX33 Restricted Airspace over Mojave Lakebed R-2515

Build 2 at EAFB mimics urban constrained airspace for unique routes and new approach methods.

Experimental Landing Surfaces

6 AAM NC "UAM Heliports"

- 40x40ft TLOF
- Northern Heliports suitable for wind/controllability studies
- All Heliport design/placement IAW AC 150/ 5390-2C Heliport Design

1 AAM NC "UAM Vertiport"

- 1090ft length x 120ft width TLOF/FATO
- **01H** + **02H** + **03H** = **XEDW** Research Airport
- **04H** + **05H** + **19/01** = **XVPT** *Research Airport*
- 06H = XX33 Research Airport

06H

AAM landing surfaces may operate with different configurations and urban wind conditions.

Conventional Geodetic Survey Method

RNAV - XEDW (01H)

Facility Search	AIRNAV Data						
ldentifier XEDW	Airport Runway						
	AIRPORT ID	■ 01H	(A)				
	STATE	LANDING LENGTH	LATITUDE				
	CA	96 FT	N34° 57' 32.8320"				
	US	TRUE BEARING 250.35°	UNGITUDE W117° 52' 54.1200"				
	MVAR E12	PUB DATE 09/28/2020	ELEVATION 2276.0 FT				
	STATUS Active	FI RWY LENGTH	ELLIPSOID ELEV. 2170.7 FT				
		FI RWY HEIGHT	MODEL / SOURCE WGS84 / E				
			HORZ. DATUM WGS84				
			VERT. DATUM EGM_96				
			CALC ELLIP HT 2170.8 FT				
			IS DISPLACED				

							21-E004
	GI	CODETI	C SIT	E INFO	RMATIO	N	
OCATION (INSTALL	ATION / CITY Edwards	, STATE / C AFB, CA/U	COUNTRY)		DATUM	WGS 84	
POINT	LATI (deg mi	TUDE In sec)	LONG (deg m	ITUDE in sec)	ELLIPSOID HEIGHT OF POINT (meters)	HEIGHT OF POINT ABOVE GROUND (meters)	ELLIPSOID HEIGHT AT GROUND (meters)
NAS9-BV1	N 34 56	53.05428	W 117 53	44.98178	682.983	0.15	N/A
			DESCR	IPTION			
tation NASA 9 Research Cente	-BV1 (NAS er on Edwa	9-BV1) is rds AFB,	located Californ	in the Ni ia.	ASA Neil A.	Armstrong	Flight
to reach the stored proceed stored proceed stored to the store of the	tation fr outh on R left onto d about 1 outh to th	om the in osamond B Lilley A 5 meters e station	tersection oulevard venue and east of	on of Rosa for 2.4 m d go 0.15 track. Th	amond Boule miles to a mile east urn right o	evard and No stop sign a to a railro onto the dir	orth Base t Lilley ad track t road an

The station is a U.S. Army Corps of Engineers brass disk set in the top of a 0.1 meter square concrete monument projecting 0.15 meter above the ground, stamped NASA-9 1969 LA DIST. It is 27 meters east of the railroad track centerline and 8 meters west of the southwestern most of two manholes.

PHOTO/SKETCH

Geodetic survey data is populated in the FAA RNAV database for coding to/from locations.

AAM National Campaign

21-E004

Emerging LIDAR Survey Method Collaboration

Drones equipped with LiDAR demonstrate high-precision fidelity survey results for future precise operations & safety.

Landing Surface Surveys

XEDW	Spatial D	Spatial Data Integrity – XEDW – 01H						
	Instrument	Location	Elevation	Vertical Error	Lateral Error			
Run	Garmin	034 57 32.88 N 117 52 54.07 W	2274 ft.	Baseline	Baseline			
	Google Earth	034 57 32.84 N 117 52 54.20 W	2276 ft.	+2 ft.	-0.04 degrees +0.13 degrees 11.55 ft. 249.50 True Bearing			
KEDW ;	TARGETS	034 57 32.69 N 117 52 53.29 W	2241 ft.	-33 ft.	-0.19 degrees - 0.78 degrees 67.71 ft. 106.48 degrees True Bearing			
	FAA SBSM	034 57 33.01 N 117 52 53.97 W	2280 ft.	+6 ft.	+0.13 degrees -0.10 degrees 15.56 ft. 32.34 True Bearing			
	FAA FIAPA	Under Experimenta	l Development	Calibr	rated to RNAV Database Survey Input			
	Geodetic	GEOINT Survey			Conventional Method Accuracy			
	LIDAR	TBD		Emer	rging Method for Increased Accuracy			
XX					(XX33)			

AAM may require new survey methods to ensure precise landing surfaces given automation in constrained airspace.

Flight Plan Coding 'Deproach' Theory

Flight Plan Coding 'Deproach' Theory

Flight Inspection (FIAPA) Collaboration

Flight Inspection Airborne Processing Application

- KEDW pending data
- AFRC Waypoint and Route Information
- Performs spatial data accuracy checks
- Post flight Analysis
- Expanding for Helicopter and UAM operations

FAA AJF-013 collaboration for exploratory candidate software for new AAM entrants of the future

AAM NC provides opportunity to explore and calibrate antenna, receivers and software for candidate flight inspection.

Flight Inspection Airborne Processing Application

- Range
- Vertical Angle
- Height MSL
- Horizontal RMS
- Vertical RMS
- Lat/Long
- GPS Status

AAM NC provides opportunity to explore and calibrate antenna, receivers and software for candidate flight inspection.

Fixed Displacement Theory Overview

Flight Routes &

Turn Radius R = tan(∳) X 68625.4 RF Bank Angle $\oint = \operatorname{atan}\left(\frac{V_{\text{ground2}}}{R \times 68625.4}\right)$

Vground2

Distance Turn Anticipation DTA = R \times tan $\binom{\beta}{2}$

RNAV 2	2	2					2
RNAV 12		1					1
RNP 2	2						18
RNP 1 ²		1					1
RNP APCH			1	1	0.34/40m1	1	
A-RNP26.9	2 or 1*	1 or 0.3	1 or 0.3	1 or 0.3	0.0 Home	0.3 or 1	0.3 or 1
RNP AR APCH	di na second		1-0.1	1-0.1	0.3 - 0.1	0.1 - 1	
RNP AR DP	mo						0.3 - 1
RNP 0.37	0.3	0.3	0.3	0.3		0.3	0.3

Table 1-2-1. Navigation Accuracy by NavSpec/Flight Phase

Formula 1-2-12. Reaction and Roll Distance (Drr)

5

1

2

3

4

Drr = VKTAS x 6 3600

Fixed Displacement Theory Drr

AAM automation may enable reduced reaction and roll displacement allowances to condense flight paths.

Obstacle Clearance Theory Overview

Required Obstacle Clearance (ROC)
-Terrain + Airspace + Obstructions

2 Minimum Enroute Altitude (MEA)

- Obstacle Clearance
- Radio Reception
- NAVAID Reception
- Gust Rejection Tolerance *

3

Distance Turn Anticipation DTA = R × tan $\binom{\beta}{2}$

Table 1-2-1. Navigation Accuracy by NavSpec/Flight Phase

RNAV 2	2	2					2
RNAV 12		1					1
RNP 2	2				0		
RNP 1 ²		1					1
RNP APCH ²³		- 14 10 A	1	1	0.34/40m4	1	
A-RNP24.9	2 or 11	1 or 0.3	1 or 0.3	1 or 0.3	0.34/40m ⁵	0.3 or 1	0.3 or 1
RNP AR APCH	1		1-0.1	1 - 0.1	0.3 - 0.1	0.1 - 1	
RNP AR DP MO	mo						0.3 - 1
RNP 0.37	0.3	0.3	0.3	0.3	10 mm	0.3	0.3

Vertical Separation Theory

Altimetry System Error (ASE) = 1000 ft Buffer (300 ft Acceptable Error)

Example AAM ASE = ~500 ft Buffer (100 ft Acceptable Error or 150 ft Same Ratio)

Vertical Separation								
Gust Updraft	Feet per second	100 ft.	150 ft.					
1000 fpm	16.7	5.9	8.9					
1500 fpm	25	4.0	6.0					
2000 fpm	33.3	3.0	4.5					

Wind drafts and gusts may have a greater effect on AAM vertical separation.

Gust Rejection Tolerance Theory

Wind drafts and gusts may impact light class vehicles with fan rotors upon approach.

Flight Path Conformance Collaboration

Data Fusion

- Real time (<1 sec refresh rate) ADS-B
- Pilot deviations
- Route tracking and conformance
- Enforcement/Contingency Management
- Post flight data analysis

Collaboration with FAA Surveillance Broadcast Services Monitor AJW -147

Flight Path Conformance Collaboration

AAM may require novel approach methods to accommodate automation, maintain message integrity, and address shifting wind conditions in constrained airspace.

A descending / decelerating method may be tested in future flight events: Baro Glidepath distance: 789 ft Dynamic missed approach 84.39 FPS opportunities given: Time 50kts Speed 50.63 FPS Altitude 2.88 FPS² 30kts Descent Rate 750 m/s Speed gateways for Time Speed 21.32 Sec deceleration Altitude Message set updates & latencies 750 M/S (250 M/S) (500 M/S) 28 "Theoretical" Message Sets Impact of wind & gusts

AAM may require novel approach methods to accommodate automation, maintain message integrity, and address shifting wind conditions in constrained airspace.

Time Space Position Information Overview

NC TSPI Instrumentation							
Provider	Monitor Type	Instrument	Notes				
Vehicle	Vehicle Sensor	Interactive Authoring Display Software (IADS)					
NASA	Unit affixed to vehicle	ADS-B Pingstation					
FAA	Remote Monitor	ADS-B SBSM					
NASA	Unit affixed to vehicle	d-GPS	NC Primary Truth Source				
FAA	Unit affixed to vehicle	Flight Inspection Airborne Processor Application	Approaches only				
EDW	Local Monitor	Primary Radar	For reserve				

NC AAM BuildupRun2 Glide Path - DGPS - 20210309 - Sortie: 1

NC AAM BuildupRun2 Glide Path - SBSM - 20210312 - Sortie: 2

AAM NC tests the latency and signal qualities of multiple instrumentation sources.

UAM Dep/App Theory

Work Underway: Fusing data to apply to approach

2020-12-04 16:09:01.871

Data Element Planning

CIFP Timeline

- IFP Wait time 24-60 months
- Priority Levels 1-4
- Priority Level 1, 2 Current Production
- \$ 5,000 per procedure/year
- 22,000 Procedures

What is the economical impact of AAM integration?

The *e*-TERPS National Database Team has updated all data in the POET for each service area indicated:

	Airports	IFR	Instrument	Future	Departure/	Terminal	STARS / STAR	Airway
	8.	Runways	Approach	Protects &	Takeoff	Arrival	Segments***	Segments**
	Helinorte	A 64 10 10 10 10 10 10 10 10 10 10 10 10 10	Procedures	Plans-on-	Mins	Areas	WORK-IN	
	nenports			File		(TAA)	PROGRESS	
AAL	160	215	752	28	476	214	17/131	591
ACE	327	551	1731	261	1149	398	23/193	603
AGL	708	1241	4497	811	2456	434	97/1147	1202
ANM	267	438	1660	147	926	23	76/776	1071
ASO	643	1051	3745	687	1764	774	165/1818	1013
ASW	506	840	3099	618	1650	314	123/1568	936
AWP	258	415	1667	205	893	7	43/593	864
NEA	519	788	2750	310	1348	192	101/1170	1287
	3388	5539	19901	3067	10662	2356	645/7396	7567
03/29/18	3383	5523	19656	3070	10539	2304	553 / 6282	7635
SINCE 03/29/:	₁₈ (+5)	(+16)	(+245)	(-3)	(+123)	(+52)	(+92/1114)	(-68)

** A protected airway segment is defined as any portion of a charted V, T or TK airway where bearing, MEA or MOCA changes.

*** STAR segments are defined as any portion of a Standard Terminal Arrival Route between named points (VOR's, waypoints, intersections, fixes) where bearing, heading, MEA or MOCA change.

NC is addressing technological, regulatory and economical hurdles for AAM integration.

QUESTIONS/COMMENTS/DISCUSSION

The Crosscutting Working Group's meeting dates and times vary depending on the needs of the AAM community.

• Nov & Dec 2021 Holiday Break

- Technical Lead:
 - Dr. Misty Davies (<u>misty.d.davies@nasa.gov</u>)
- Coordinator:
 - Rajan Shankara (<u>Rajan.shankara@nasa.gov</u>)

Comments, questions, suggestions for future topics, and other workgroup information:

- Email us at: arc-cal-nari@mail.nasa.gov; or
- Visit the new AEWG Portal: <u>https://nari.arc.nasa.gov/aam-portal/</u>.

David Webber is a Research/Flight Test Engineer for the FAA's Aircraft Certification Service, supporting standards development, certification, and international validations across all aircraft product lines. He is deeply involved in a variety of flight research projects designed to support the development, certification and advent of new and novel aircraft technologies, and is technical lead for the NASA Advanced Air Mobility UAM Surrogate Helicopter flight research efforts. He recently accepted a detail to NASA to support Advanced Air Mobility research on a full time basis.

David Zahn is the Principal Investigator of UAM Airspace Procedures for NASA's (Sim Labs) Advanced Air Mobility National Campaign (AAM-NC) located at the Mike Monroney Aeronautical Center, Oklahoma City, OK. Served as a UH-60 Blackhawk pilot in the U.S. Army with previous experience in airfield operations, safety, terminal procedures (TERPS), accident investigation and international flight instruction. David's background in low-level Air Assault/MEDEVAC/Firefighting operations combined with his TERPS experience helped the NASA team develop UAM specific approach/departure procedures and airspace infrastructure models for UAM research, certification, and integration. David Zahn graduated from Oral Roberts University in Tulsa, OK where he was also an NCAA Division I athlete.