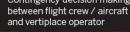
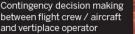
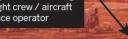

High-Density Automated Vertiport Concept of Operations Overview

September 2nd, 2021

Departure from corridor "off-ramp"






BOEING

assenger/Cargo

_oading and Unloading Are

Communications, Navigation Surveillance and Information Eauipment monitors ncoming flights

Vertiport Operational

Key Aircraft trajectory Flight rerouted to another vertiport Surface navigation lines Charging cable Stakeholder function 3D surface trajectory Charging pads Staging pads

TLOF pads

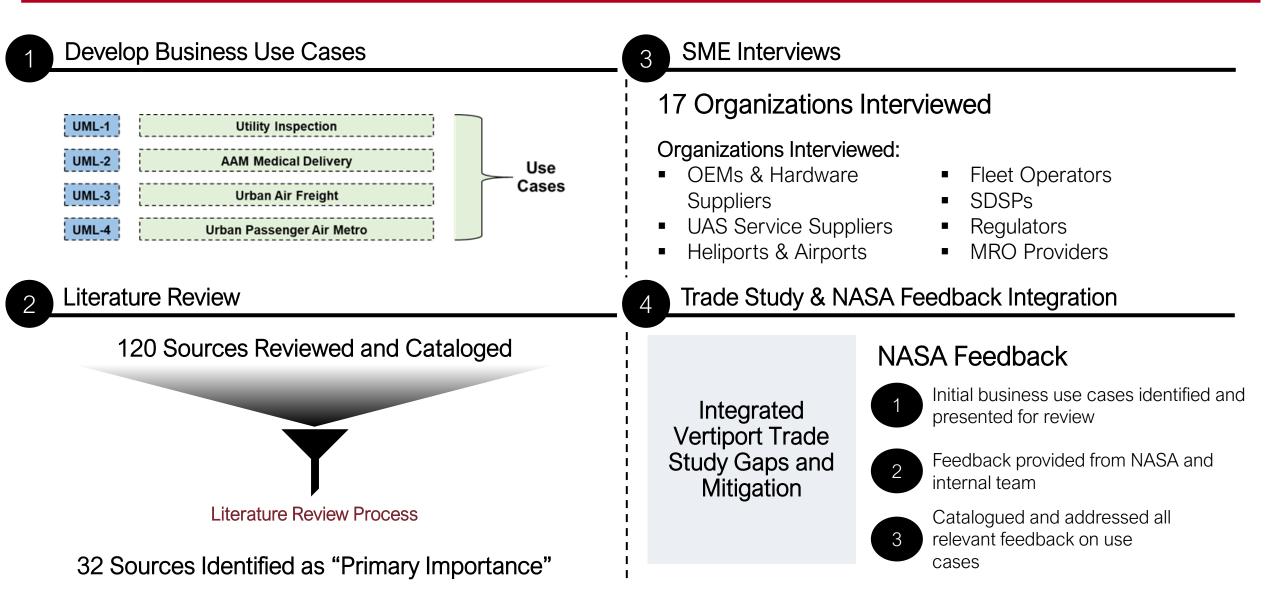
GAMA

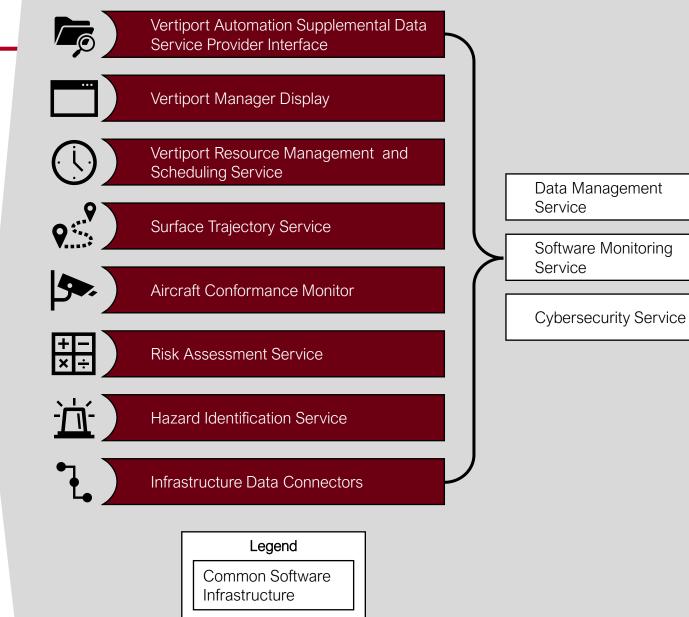
Deloitte

Motivation

Develop a concept of operations to:

- Identify relevant requirements, considerations, barriers, and enabling technologies
- Inform operationalization of vertiports and maturation of vertiport automation technologies at UML-4




Concept of Operations Development Process

Document Organization¹

1. Introduction	Purpose and Scope
	Assumptions and Constraints
	UML Mapping
	Operational Stakeholder Descriptions
2. Current State	Description of Current State
	AAM Vertiport State-of-the-Art Assessment
	Vertiport Challenges and Barriers
3. Desired Changes	Rationale for Changes
	Description of Desired Changes
	Description of the Proposed System
4. Future State	Operational Environment
Concept of Operations	Operational Stakeholders
	Vertiport Automation System Services
	Vertiport Automation System Relationships
	Configuration Decisions
5. Operational Scenarios	Base Nominal Scenarios
	Off-Nominal Scenarios
	Resource Allocation
6. Summary of Impacts	Operational Impacts
	Organizational Impacts
	Impacts During Development
7. Analysis of Proposed System	Summary of Improvements
	Disadvantages and Limitations
	Alternatives and Tradeoffs Considered
	Path Forward

Individual Service

Vertiport Automation System

VAS Services	Service Role	Service Description
Vertiport Resource Management and Scheduling Service	Core Function	Responsible for determining vertiport configurations, implementing business rules, enforcing community and government-imposed requirements, and responding to resource requests to strategically allocate and assign vertiport resources .
Vertiport Automation Supplemental Data Service Provider	External Interface	Standardized interface allowing stakeholders to make API calls to the VAS and to use subscription as a means of direct communications to and from the VAS deployed at the vertiport.
Surface Trajectory Service	Support Function	Determine taxiway and gate availability and update a nominal or pre-planned 4D surface trajectory (latitude, longitude, height above vertiport surface, and time) for aircraft surface movement.
Vertiport Manager Display	Support Function	Physical user interface (UI) that describes the current state of vertiport operations and provides sufficiently detailed information to adjust business objectives and configuration settings and help clear operational anomalies and hazards.
Infrastructure Data Connectors	Support Function / Safety	Connects vertiport infrastructure , whether owned and operated by the vertiport or an SDSP, to VAS Services. Examples include Weather, Foreign Object Debris Detection, Surveillance, Charging, Noise, Communications, and Resource Service.
Aircraft Conformance Monitor	Safety	Monitors aircraft conformance on the vertiport surface and within the surrounding airspace for compliance with scheduled arrival and departure operations.
Hazard Identification Service	Safety	Receives anomaly alerts from the Aircraft Conformance Monitor and Software Monitoring Service, detects anomalies using vertiport infrastructure sensors, identifies hazards from those anomalies , and sends identified hazards to the Risk Assessment Service.
Risk Assessment Service	Safety	Supports the vertiport Safety Management System (SMS) program by automating parts of the Safety Risk Management process through estimating pre-identified hazard risks .
Data Management System	Common Software	Manages data across the VAS and serves as the central repository and database manager, ensuring that each service has access to the right data at the right time.
Cybersecurity Service	Common Software	Authenticates and validates data requests from external users, between VAS services, and monitors for anomalies in VAS services for indications of security breaches.
Software Monitoring Service	Common Software	Ensures that each VAS service is behaving as expected and provides an assessment of operational status for each service.

Operational Viewpoint – 1 Diagram (Integrated View)

Vertiport Operations Area (VOA): Transparent Red Cylinder The VOA is a construct to ensure the safety of high-density flight operations around vertiports.


Vertiport Volume (VPV): Transparent White Cylinder

The VPV is tightly coupled with the vertiport's geographic location, and traffic cannot flow through the VPV unless the flight has been cleared by the vertiport manager.

This ConOps does not describe the airspace design. The AAM Managed Corridors are used to signify that there is a volume of airspace designated for AAM aircraft in which high-density traffic can approach and depart from vertiports.

The Vertiport Operational Control Center is used to indicate a "central" vertiport, managing several vertiports digitally connected in the geographic region.

PSU A

- Vertiport operations assume predetermined approach and departure fixes
- The Vertiport Operations Area (VOA) and Vertiport Volume (VPV) will be charted on aeronautical charts
- The PSU manages the airspace in the VOA and VPV
- Air traffic will be a mix of piloted, semi-automated, and fully automated aircraft
- Flight crews will be remote or onboard the aircraft
- Sufficient CNSI technology will be onboard the aircraft
- Vertiports may need to comply with local, state, or federal regulations
- The PSU is responsible to act as the broker of timing, routing, and sequencing of aircraft in AAM Corridors
- AAM aircraft will follow 4D required navigation performance (RNP) trajectories

 Taxi and Takeoff 1. PSU coordinates takeoff time slot with vertiport and aircraft is sequenced for taxi and takeoff 2. Flight crew and aircraft taxi on vertiport generated 4D surface trajectories while self-separating 3. Aircraft arrives at the departure pad, PSU performs airspace checks, and clears the aircraft for takeoff 	 Land, Taxi, and Deplane The aircraft and flight crew are responsible for navigating the approach while remaining clear of static or dynamic obstacles The aircraft lands, and inform stakeholders of arrival The vertiport generates a 4D surface trajectory to navigate to the appropriate surface destination The vertiport monitors for potential hazards that would impact surface movement and generates alerts if necessary Passengers or cargo is offloaded from the aircraft assisted by ground crew
Climb and Cruise Pre-Flight 1. Initialize vertiport operations and begin sharing resource availability information 2. Fleet operator files a flight plan 3. PSU verifies and facilitates flight plan request for vertiport approval	T Manager Display iport Operational

munications, Navigation,

eillance, and Information

ipment monitors

ming flights

Key

A

Aircraft trajectory

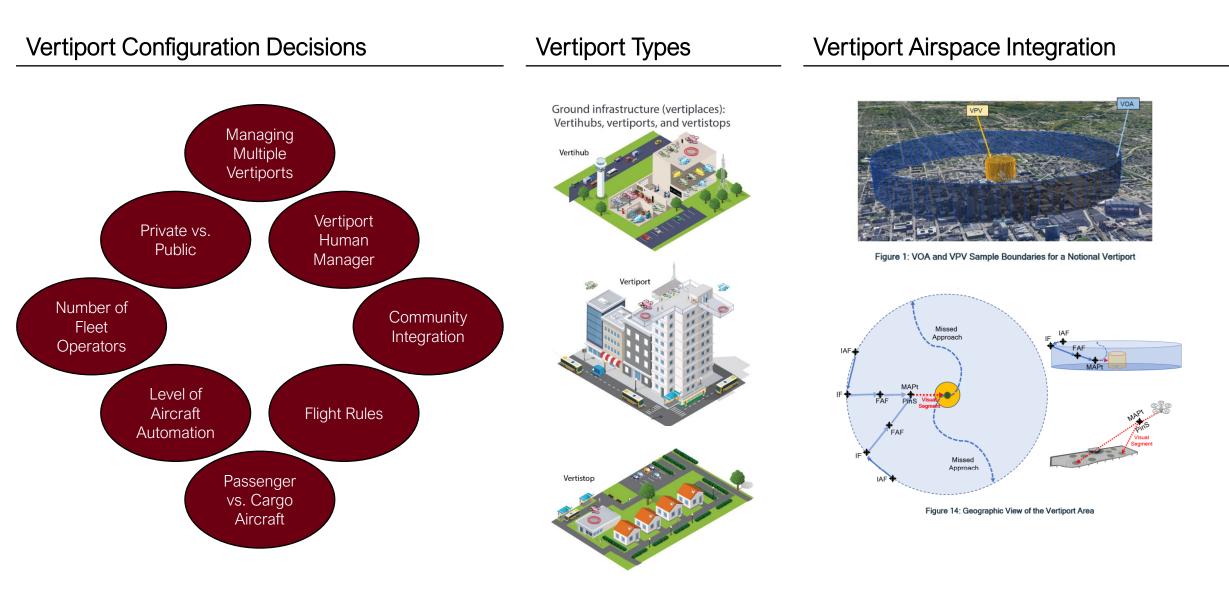
Charging cable

Stakeholder function

Charging pads

Staging pads

TLOF pads

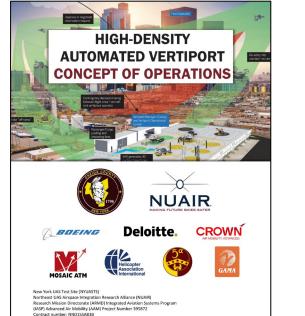

3D surface trajectory

Flight rerouted to another vertiport Surface navigation lines

9

- 4. Ground and flight crew aircraft, flight, and system
- 5. checkstiport provides resource availability information
- 5. Fleet operator authorizes and dispatches the flight

Vertiport Automation System Design Considerations


Thank you

New York IJAS Tert Site (WTVIJATS) horthoast UJAS Alrapace integration Research Alliance (NUAIR) Research Mission Directorate (ARMD) Integrated Aviation Systems Program (UASP) Advanced Air Mobility (AAD) Project Number 395872 Contract number: NND155A838 July 26 2021

July 26 2021

Program (IASP) Advanced Air Mobility (AAM) Project Number 395872

Contract Number: NND155A83B July 26 2021

New York UAS Test Site (NYUASTS) Northast UAS Alispace Integration Research Alliance (NUAIR) Research Mission Directorate (ARRMD) Integrated Aviation Systems Program (UASP) Advanced air Medbilly (AdAM) Project Number 395872 Contract number: NND155A838 July 26 2021

11